Расчет режимов сварки в со2. Режимы сварки в углекислом газе. Скорость подачи сварочной проволоки

💖 Нравится? Поделись с друзьями ссылкой

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Р Ф

ГОУ ВПО «Волжский государственный инженерно-педагогический университет»

Ф.П. Сироткин

РАСЧЕТ ПАРАМЕТРОВ РЕЖИМОВ СВАРКИ

Методические указания по проведению практических занятий по дисциплине «Технология электрической сварки плавлением»

Н. Новгород

Сироткин Ф.П. Расчет параметров режимов сварки: Методические указания по проведению практических занятий по дисциплине «Технология электрической сварки плавлением» - Н.Новгород: ВГИПУ, 2007. - 55 с.

Рецензенты:

Е.Н. Батков – преподаватель спец. дисциплин, Нижегородского строительного техникума.

А.Г. Китов – заведующий кафедрой «Автомобильный транспорт», ГОУ ВПО «Волжского государственного инженерно-педагогического университета»

Аннотация

В методических указаниях приведены расчеты режимов сварки:

В среде углекислого газа;

Механизированной и автоматической под слоем флюса;

Электрошлаковой пластинчатыми и проволочными электродами.

Методические указания содержат подробную последовательность определения параметров режимов сварки, сопровождающихся указанием необходимых формул, таблиц, графиков и номограмм, что позволит студентам самостоятельно рассчитать режимы сварки для различных толщин свариваемых металлов.

Ф.П. Сироткин,2010

© ВГИПУ, 2010

Введение

1. Общие положения

2.1. Расчет режима сварки швов стыковых соединений

2.2. Расчет режима сварки угловых швов

3. Расчет режимов сварки в среде углекислого газа

3.1. Расчет режима сварки в среде углекислого газа швов стыковых соединений

3.2. Расчет режима сварки в среде углекислого газа угловых швов сварных соединений

4. Расчет режимов механизированной (полуавтоматической) и автоматической сварки под слоем флюса

4.1. Расчет режима сварки швов стыковых соединений

4.2. Расчет режима сварки угловых швов сварных соединений

5. Расчет режимов электрошлаковой сварки

5.1. Расчет режима электрошлаковой сварки проволочными электродами

5.2. Расчет режима электрошлаковой сварки пластинчатыми электродами

Заключение

Приложение А. Ориентировочные режимы ручной дуговой сварки

Приложение Б. Ориентировочные режимы полуавтоматической (механизированной) и автоматической сварки в среде углекислого газа

Приложение В. Ориентировочные режимы сварки под флюсом

Приложение Г. Ориентировочные режимы электрошлаковой сварки

6. Список используемой литературы

Введение

Методические указания по проведению практических занятий адресовано студентам очной и заочной формы обучения специальности 050501.65 Профессиональное обучение (машиностроение и технологическое оборудование), специализация Технологии и технологический менеджмент в сварочном производстве и предназначено для выполнения практических занятий и раздела «Расчет режимов сварки» курсовой работы (проекта).

В данном пособии приводятся расчеты режимов:

Ручной дуговой покрытыми электродами;

Механизированной и автоматической в среде углекислого газа;

Автоматической и полуавтоматической под флюсом;

Электрошлаковой сварки стыковых и угловых швов сварных соединений.

1. Общие положения

1. При описании раздела «Расчет режимов сварки» следует:

а) дать определение режима, принятого для изготовления сварной конструкции вида сварки;

б) перечислить основные и дополнительные параметры режима выбранного вида сварки;

в) для примера привести расчет режима сварки стыкового или углового шва сварной конструкции, для чего сделать эскиз этого соединения в соответствии с типом соединения по ГОСТу на выбранный вид сварки.

2. Основные типы соединений, выполняемых под флюсом, регламентированы ГОСТ 8713-79 – «Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры».

3. Основные типы соединений, выполняемых в среде защитных газов также регламентированы ГОСТ 14771-76 – «Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы».

4. Основные типы соединений, выполняемых электрошлаковой сваркой регламентированы ГОСТ 15164-78 – «Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры».

5. Основные типы соединений, выполняемых ручной дуговой сваркой регламентированы ГОСТ 5264-80 – «Ручная дуговая сварка. Соединения сварные. Основные типы и конструктивные элементы».

6. Результаты расчетов режимов сварки следует занести в таблицу.

2. Расчет режимов ручной дуговой сварки

Режимом сварки называют совокупность основных характеристик сварочного процесса, обеспечивающую получение сварных швов заданных размеров, формы и качества.

При ручной дуговой сварке основными параметрами режима являются

1. Диаметр электрода, d эл, мм.

5. Род тока.

6. Полярность тока (при постоянном токе).

2.1. Расчет режима сварки швов стыковых соединений

Швы стыковых соединений могут выполнятся с разделкой и без разделки кромок по ГОСТ 5264-80.

Диаметр электрода при сварке швов стыковых соединений выбирают в зависимости от толщины свариваемых деталей.

При выборе диаметра электрода при сварке стыковых швов в нижнем положении следует руководствоваться данными таблицы 1.

При сварке многослойных швов на металле толщиной 10 – 12 мм и более первый слой должен свариваться электродами на 1 мм меньше, чем указано в таблице 1, но не более 5 мм (чаще всего 4 мм), так как применение электродов больших диаметров не позволяет проникнуть в глубину разделки для провара корня шва.

При определении числа проходов следует учитывать, что сечение первого прохода не должно превышать 30-35 мм 2 и может быть определено по формуле:

F 1 = (6 – 8) · d эл, мм 2 , (1)

а последующих проходов – по формуле:

F с = (8 – 12) · d эл, мм 2 , (2)

где F 1 – площадь поперечного сечения первого прохода, мм 2 ;

F с – площадь поперечного сечения последующих проходов, мм 2 ;

Для определения числа проходов и массы наплавленного металла требуется знать площадь сечения швов.

Площадь сечения швов представляет собой сумму площадей элементарных геометрических фигур, их составляющих. Тогда площадь сечения одностороннего стыкового шва выполненного без зазора можно определить по формуле:

F 1 = 0,75 е · g , мм 2 , (3)

а при наличии зазора в соединении – по формуле:

(F 1 + F 2) = 0,75 е · g + S · в, мм 2 , (4)

где е – ширина шва, мм; g – высота усиления шва, мм; S – толщина свариваемого металла, мм; в – величина зазора в стыке, мм.

Площадь сечения стыкового шва с V–образной разделкой и с подваркой корня шва (см. рис. 1) определяется как сумма геометрических фигур:

F = F 1 + F 2 + F 3 + 2F 4 , (5)

Рисунок.1. Геометрические элементы площади сечения стыкового шва:

где S – толщина металла, мм; h – глубина проплавления, мм; c – величина притупления, мм; e – ширина шва, мм; e 1 – ширина подварки корня шва, мм; в – величина зазора, мм; g – высота усиления шва, мм; g 1 – высота усиления подварки корня шва, мм; α – угол разделки кромок.

Глубина проплавления определяется по формуле:

h = (S - c), мм. (6)

Площадь сечения геометрических фигур (F 1 + F 2) определяют по формуле 4, F 3 – по формуле 3, а площадь прямоугольных треугольников F 4 определяют по формуле:

F 4 = h · x/2, мм 2 , (7)

где x = h · tg α/2;

F 4 = (h 2 ·tg α/2) /2, мм 2 , (8)

Но рассматриваемая нами площадь V–образного шва состоит из двух прямоугольных треугольников, поэтому:

2F 4 = h 2 · tg α/2, мм 2 . (9)

Подставляя значения элементарных площадей в формулу (5), получим:

F н = 0,75 · е · g +в · S + 0,75 e 1 · g 1 + h 2 · tg α/2, мм 2 . (10)

При X–образной разделке площадь наплавленного металла подсчитывают отдельно для каждой стороны разделки.

Зная общую площадь поперечного сечения наплавленного металла (F н), а также площадь поперечного сечения первого (F 1) и каждого из последующих проходов шва (F с), находят общее число проходов «n» по формуле:

n = (F n -F 1 /F с) + 1. (11)

Полученное число округляют до ближайшего целого.

Расчет сварочного тока при ручной дуговой сварке производится по диаметру электрода и допускаемой плотности тока по формуле:

I св = F эл · j = (π · d эл 2 / 4) · j , А, (12)

где π – 3,14;

j – допустимая плотность тока, А/мм 2 ;

F эл – площадь поперечного сечения электрода, мм 2 ;

d эл – диаметр электрода, мм.

Сварочный ток определяется для сварки первого прохода и последующих проходов только при сварке многопроходных швов.

Допустимая плотность тока зависит от диаметра электрода и вида покрытия: чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения (см. табл. 2).

Таблица 2 - Допустимая плотность тока в электроде при ручной дуговой сварке

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20-36 В и при проектировании технологических процессов ручной дуговой сварки не регламентируется.

Поэтому напряжение на дуге следует принять какое – то конкретное.

Скорость перемещения дуги (скорость сварки) следует определять по формуле:

V св = L н · I св / γ · F н · 100, м/ч, (13)

где L н – коэффициент наплавки, г/А час; (см. табл. 3)

γ – плотность наплавленного металла за данный проход, г/см 3 (7,8 г/см 3 – для стали);

F н – площадь поперечного сечения наплавленного металла, мм 2 .

Скорость перемещения дуги (скорость сварки) определяют для первого прохода и последующих проходов только при сварке многопроходных швов. Результаты расчета режима сварки стыкового шва следует занести в табл. 3.

Таблица 3 - Режимы сварки стыкового шва и его размеры

Расчет режима сварки угловых швов

При сварке угловых швов диаметр электрода выбирается в зависимости от катета шва.

Примерное соотношение между диаметром электрода и катетом шва при сварке угловых швов приведено в табл. 4.

При ручной дуговой сварке за один проход могут свариваться швы катетом не более 8 мм.

При больших катетах швов сварка производится за два и более проходов Максимальное сечение металла, наплавленного за один проход, не должно превышать 30 – 40 мм 2 (Fmax = 30÷40 мм 2).

Площадь поперечного сечения углового шва, которую необходимо знать при определении числа проходов, рассчитывают по формуле:

F н = K у ·К 2 / 2 мм 2 , (14)

где F н – площадь поперечного сечения наплавленного металла, мм 2 ;

К – катет шва, мм;

К у – коэффициент увеличения, который учитывает выпуклость шва и зазоры.

Для наиболее часто встречающихся угловых швов с катетом 2 – 20 мм, коэффициент К у выбирают по табл. 5.

Определив примерную площадь сечения углового шва и зная максимально возможную площадь сечения, получаемую за один проход, находят число проходов «n» по формуле:

n = F n / (30-40). (15)

Полученное дробное число округляют до ближайшего целого.

Силу сварочного тока определяют по формуле:

I св = (π · d 2 эл /4) · j, (16)

где π – 3,14;

d эл – диаметр электрода, мм;

j – допустимая плотность тока, А/мм 2 .

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20 – 38 В. Следует принять какое - то конкретное.

Скорость сварки определяют по формуле:

V св = L н · I св / γ · F н ·100, м/ч, (17)

где L н – коэффициент наплавки, г/А час;

γ – плотность наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

F н – площадь поперечного сечения наплавленного металла углового шва, см 2 ;

Значения коэффициентов наплавки для различных марок электродов приведены в табл. 6.

Таблица 6 - Коэффициенты наплавки для различных марок электродов

Результаты расчетов режима сварки угловых швов следует занести в табл. 7.

Таблица 7 - Режимы сварки угловых швов

Ориентировочные режимы ручной дуговой сварки приведены в приложении А.

3. Расчет режимов сварки в среде углекислого газа

Сварка в среде углекислого газа широко применяется при изготовлении конструкций из углеродистых, низколегированных, теплоустойчивых сталей, среднелегированных, хромоникелевых и аустенитных сталей.

Основные типы соединений, выполняемые в среде углекислого газа, регламентированы ГОСТ 14771-76.

Основными параметрами режима сварки в среде углекислого газа являются:

1. Диаметр электродной проволоки, d эл, мм.

2. Сила сварочного тока, I св, А.

4. Скорость сварки, V св, м/ч.

5. Расход защитного газа, q r .

Дополнительными параметрами режима являются:

6. Род тока.

7. Полярность при постоянном токе.

3.1. Расчет режима сварки в среде углекислого газа швов стыковых соединений

Швы стыковых соединений могут выполняться как с разделкой, так и без разделки кромок.

Диаметр электродной проволоки (d эл) выбирается в зависимости от толщины свариваемых деталей. При выборе диаметра электродной проволоки при сварке швов в нижнем положении следует руководствоваться данными таблицы 8

Таблица 8 - Выбор диаметра электродной проволоки для сварки швов стыковых соединений

Толщина металла, мм

Форма подготовки кромок

Зазор в стыке, мм

Диаметр электродной проволоки, мм

Число проходов

Встык, без разделки кромок

V – образная односторонняя

V – образная двусторонняя

Сила сварочного тока, (I св) выбирается в зависимости от глубины провара (h) и определяется по табл. 9.

Таблица 9 - Определение сварочного тока в зависимости от глубины провара

Глубина провара ( h ) при сварке с первой стороны определяется по формуле:

h = S / 2 ± 1 мм, (18)

где S – толщина свариваемых деталей, мм.

Напряжение на дуге ( U д ) выбирается по табл. 10.

Таблица 10 - Напряжение на дуге в зависимости от силы сварочного тока

Скорость сварки (V св) определяют по табл. 11.

Таблица 11 - Определение скорости сварки в зависимости от диаметра электродной проволоки

Расход углекислого газа (q r) выбирают по данным табл.12 в зависимости от марки свариваемого металла и толщины металла.

Таблица 12 - Расход углекислого газа в зависимости от толщины свариваемого металла стыкового соединения

Результаты расчета режима сварки стыкового шва следует занести в табл. 13.

Таблица 13 - Режимы сварки стыкового шва в среде углекислого газа

3.2. Расчет режима сварки в среде углекислого газа угловых швов сварных соединений

При сварке угловых швов диаметр электродной проволоки выбирается в зависимости от толщины металла по табл. 14.

Таблица 14 - Выбор диаметра электродной проволоки для сварки угловых швов

Напряжение на дуге (U д), силу тока (I св), скорость сварки (V св) определяют по номограмме (рис. 2).

Рисунок. 2. Номограмма для определения режимов полуавтоматической сварки в среде углекислого газа угловых швов диаметром электродной проволоки 1,6 мм

Чтобы определить режим сварки, обеспечивающий необходимый катет шва, выбирают точку, лежащую на линии заданного катета (Кр), в области, ограниченной штриховыми линиями, в зависимости от того, какой шов требуется получить: вогнутый, плоский или выпуклый.

Из этой точки провести линии на ось ординат, где получим значение сварочного тока, и ось абсцисс, где получим значение скорости сварки.

Напряжении на дуге берется в ближайшем прямоугольнике.

Расход углекислого газа выбирается по табл. 15.

Таблица 15 - Расход углекислого газа в зависимости от толщины свариваемого углового соединения

Результаты определения режимов сварки угловых швов следует занести в табл. 16.

Таблица 16 - Режимы сварки углового шва в среде углекислого газа

Ориентировочные режимы механизированной (полуавтоматической) и автоматической сварки приведены в приложении Б

4. Расчет режимов механизированной (полуавтоматической) и автоматической сварки под слоем флюса

Конструктивные элементы подготовки кромок и виды сварных соединений (стыковые, угловые, тавровые, нахлесточные) для автоматической и механизированной сварки под слоем флюса регламентированы ГОСТ 8713-79.

Основными параметрами режима автоматической и механизированной сварки под слоем флюса, оказывающим влияние на размеры и форму шва, являются:

1. Диаметр электродной (сварочной) проволоки, d эл, мм.

2. Сила сварочного тока, I св, А.

4. Скорость подачи электродной проволоки,V п.п. , м/ч.

5. Скорость сварки, V св, м/ч.

Дополнительными параметрами режима являются:

6. Род тока.

7. Полярность (при постоянном токе).

8. Марка флюса.

Расчет режима сварки швов стыковых соединений

Расчет режима сварки начинают с того, что задают требуемую глубину провара при сварке с первой стороны, которая устанавливается равной:

h = S/2 ± (1-3), мм, (19)

где S – толщина металла, мм.

Силу сварочного тока , необходимую для получения заданной глубины проплавления основного металла, рассчитывают по формуле:

I св = (80-100)·h, А. (20)

Диаметр сварочной проволоки рассчитывают по формуле:

d эл = 2I св / j·π , мм, (21)

π – 3,14;

j – плотность тока, приближенные значения которой приведены в табл. 17.

Таблица 17 - Допускаемая плотность тока в электродной проволоке при автоматической сварке стыковых швов

Напряжение на дуге принимают для стыковых соединений в пределах 32-40 В. Большему току и диаметру электрода соответствует большее напряжение на дуге. Выбрать конкретное напряжение.

Определяют коэффициент наплавки (L Н), который при сварке постоянным током обратной полярности L Н = 11,6±0,4 г/А ч, а при сварке на постоянном токе прямой полярности и переменном токе по формуле:

L = A + B · I св /d эл, г/А·ч, (22)

где I св – сила сварочного тока, А;

d эл - диаметр электродной проволоки, мм;

А, В – коэффициенты, значения которых приведены в табл. 18.

Таблица 18 - Значения коэффициентов А и В

Скорость сварки электродной проволокой диаметром 4-6 мм определяют по формуле:

V = (20-30) · 10 3 / I св, м/ч; (23)

а электродной проволокой диаметром 2 мм по формуле

V = (8-12) · 10 3 / I св, м/ч. (24)

Скорость подачи сварочной проволоки (V n . n .) определяют по формуле:

V п.п. = 4· L Н · I св / π · d эл 2 , м/ч, (25)

где L Н – коэффициент наплавки, г/А·ч; π – 3,14;

γ – удельный вес наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

I св – сила сварочного тока, А.

Результаты, расчетов режима сварки стыковых соединений следует занести в табл. 19.

Таблица 19 - Режимы сварки стыкового шва

4.2. Расчет режима сварки угловых швов сварных соединений

Расчет режима сварки ведется в следующей последовательности:

Зная катет шва (К), определяют площадь поперечного сечения наплавленного металла, которая для шва без выпуклости высоты усиления определяется по формуле:

Мм 2 , (26)

где К – катет шва, мм;

а для шва с выпуклостью (с высотой усиления) – по формуле:

, мм 2 , (27)

где g – выпуклость углового шва величины усиления, мм.

Выбирают диаметр электродной проволоки . Следует иметь в виду, что угловые швы с малым катетом (К=3-4мм) можно получить при использовании проволоки диаметром 2 мм; швы с катетом (К=5-6мм), получают при сварке проволокой диаметром 4-5 мм. Сварка диаметром более 5 мм не обеспечивает необходимого провара вершины углового шва и поэтому практического применения не находит, максимальный катет углового шва, который можно получить за один проход, независимо от диаметра электродной проволоки, равен 10 мм.

Для принятого диаметра электрода подбирают плотность тока по таблице 21, а затем определяют силу сварочного тока по формуле:

I св = π · d эл 2 / 4 · j, А, (28)

где j – допускаемая плотность тока в электродной проволоке при сварке угловых швов (табл. 20); π – 3,14;

d эл – диаметр электродной проволоки, мм.

Таблица 20 - Допускаемая плотность тока в электродной проволоке при сварке угловых швов

Затем по рис. 3, зная величину сварочного тока и диаметр электродной проволоки, устанавливают оптимальное напряжение на дуге (U Д).

При этом следует выбирать значения напряжения на дуге ближе к нижнему пределу диапазона оптимальных напряжений.

Рисунок. 3. Зависимость Ψ пр ст величины сварочного тока и напряжения на дуге. Ток переменный. Флюс марки ОСЦ-45:а d эл = 2мм; б d эл =4 мм; в d эл = 5 мм; г d эл = 6 мм.

Зная площадь сечения наплавленного металла за один проход определяют скорость сварки по формуле:

V = L H · I св / F H · γ, м/ч, (29)

где L H - коэффициент наплавки электродной проволоки, г/А·час;

I св – сила сварочного тока, А;

F Н – площадь наплавленного металла, см 2 ;

Y – удельный вес наплавленного металла, г/см 3 (7,8 г/см 3 – для стали).

Скорость подачи электродной проволоки (V n . n .) определяется по формуле:

V п.п. = 4 · L H · I св / F H · γ , м/ч, (30)

где L H -коэффициент наплавки, г/А час;

I св - сила сварочного тока, А;

d эл – диаметр электродной проволоки, мм;

γ – удельный вес наплавленного металла, г/см 3

(7,8 г/см 3 – для стали).

Результаты расчета режима сварки и размеров угловых швов следует свести в табл. 21.

Таблица 21 - Режимы сварки углового шва


Расчет режимов электрошлаковой сварки

При электрошлаковой сварке электродом может служить не только проволока, но и электроды в виде пластин, стержней.

Пластинчатые электроды применяются главным образом при большой толщине свариваемых деталей и небольшой высоте швов жидкого металла и перегретого шлака. Электрошлаковая сварка может быть осуществлена одним проволочным электродом диаметром 2 или 3 мм без поперечных колебаний и с постоянной скоростью подачи проволоки в шлаковую ванну при сварке металла толщиной до 50 мм. При сварке больших толщин применяют двух-, трех- и многоэлектродную сварку проволочными электродами без поперечных или с поперечными колебаниями.

Электрошлаковой сваркой можно выполнить любой тип соединений, регламентированных ГОСТ 15164-79.

Основными параметрами режима электрошлаковой сварки являются:

1. Диаметр электродной проволоки, d эл.

2. Сила сварочного тока, I св, А.

4. Скорость сварки, V св, м/ч.

5. Скорость подачи электрода, V п.э. , м/ч.

6. Скорость поперечных перемещений электрода, V п.п. , м/ч.

Дополнительными параметрами режима являются:

7. Сухой вылет электрода, l с, сек.

8. Время выдержки у ползуна при сварке с поперечными колебаниями,

9. Число сварочных проволок-электродов, n эл.

10. Величина зазора в стыке, B, мм.

11. Глубина шлаковой ванны, h шл, мм.

12. Недоход электрода до ползуна.

13. Марка флюса.

14. Расстояние между электродами, l э, мм.

Электрошлаковую сварку можно выполнить проволочными и пластинчатыми электродами в зависимости от толщины свариваемых деталей.

5.1. Расчет режима электрошлаковой сварки проволочными электродами

По толщине металла устанавливаются зазор в стыке , пользуясь рекомендациями таблицы 1, а затем выбирают диаметр проволочного электрода . Наиболее рациональное применение проволоки диаметрами 2 и 3 мм, так как увеличение диаметра проволоки приводит к росту ширины провара и уменьшению глубины шлаковой ванны.

Число проволочных электродов (n эл) выбирают по таблице 22.

Расстояние между электродами l э при сварке без поперечных колебаний принимают равным 30-50 мм, при сварке с поперечными колебаниями – 50-180 мм. Выбрать конкретную величину. При числе электродов более трех, количество электродов n эл определяют по формуле:

n эл = S / l э, (31)

l э – расстояние между электродами, мм.

Сухой вылет электрода – расстояние от нижней точки мундштука до поверхности шлаковой ванны (l с), находится в пределах 60-70 мм. Выбрать конкретную величину.

Силу сварочного тока (I св) на одну сварочную проволоку выбирают в зависимости от отношения толщины свариваемого металла к числу электродных проволок по формуле:

I св = A+B · S/n эл, (32)

где S – толщина металла, мм;

n эл – число проволочных электродов;

A – коэффициент, равный 220-280;

B – коэффициент, равный 3,2-4,0.

Сварочный ток с учетом количества проволок определяется по формуле:

I св п = I св · n эл . (33)

Напряжение шлаковой ванны (U ш. в.) определяется по формуле:

U ш.в. = 12 + 125+S/(0,075·n эл.) (34)

где S – толщина свариваемого металла, мм;

Скорость подачи проволочных электродов (V п.э.) определяют по формуле:

V н.э. = I св / (1,6-2,2), (м/ч) (35)

где I св – сила сварочного тока, А.

Скорость сварки (V св) определяют по формуле:

V св = n эл ·L H ·I св n / γ·B·S·K у, (36)

где n эл – количество проволочных электродов;

L н – коэффициент наплавки, г/А ч (L н = 30 ÷ 35 г/А ч);

I св – сила сварочного тока, А;

γ – плотность наплавленного металла, г/см (7,8 см 3 – для стали);

в – величина зазора в стыке, мм;

S – толщина свариваемого металла, мм;

К у – коэффициент увеличения, учитывающий выпуклость шва;

(К у = 1,05 – 1,10)

Глубина шлаковой ванны ( h шл ), от которой зависит устойчивость процесса и ширина провара, определяется по формуле:

h шл = I n св ·(0,0000375·I св – 0,0025)+ 30 (мм), (37)

где I св – сила сварочного тока, А;

I n св – сила сварочного тока с учетом количества проволок, А.

Скорость поперечных перемещений электрода, U п.п. определяют по формуле:

U n . n . = 66-0,22 ·S/n эл, (м/ч) (38)

где S – толщина свариваемого металла, мм;

n эл – количество проволочных электродов.

Время выдержки у ползуна ( t в ) определяют по формуле:

t в = 0,0375 · S/n эл. +0,75 (сек) (39)

Недоход электрода до ползунов принимают равным 5-7 мм.

Результаты расчетов режима электрошлаковой сварки проволочным электродом следует занести в табл. 23.

Таблица 23 - Режимы электрошлаковой сварки проволочным электродом

5.2. Расчет режимов электрошлаковой сварки пластинчатыми электродами.

Электрошлаковая сварка пластинчатыми электродами применяется для соединения массивных изделий с длиной швов до 1 – 1,5 м. При сварке пластинчатыми электродами сечение деталей в месте стыка должно иметь прямоугольную форму.

Число пластинчатых электродов ( n эл ) определяют по формуле:

n эл = S/(70-100), (40)

где S – толщина свариваемого металла, мм.

При толщине деталей до 150 мм допускается сварка одним пластинчатым электродом.

Ширину каждого из электродов ( В ) определяют по формуле:

(41)

где S – толщина свариваемого металла, мм.

n эл – число пластинчатых электродов.

Число фаз ( n ф ) выбирают исходя из расчета более равномерной загрузки фаз. При трех и более электродах число фаз, n ф = 3.

Допустимый удельный ток ( i доп ) определяют по формуле:

i доп = (I ф ·n эл)/(S·n ф), (А/мм) (42)

где I ф – допустимый сварочный ток на каждую фазу, А;

n эл - количество пластинчатых электродов;

S – толщина свариваемого сечения, мм;

n ф – число фаз.

Допустимый сварочный ток на каждую фазу I ф принимается равным номинальному току сварочного трансформатора. При сварке аппаратом А-480 с трансформатором ТШС – 3000-3, I ф = 3000А.

Минимальную толщину ( S min ) пластинчатого электрода находят исходя из условий заполнения разделки. Минимальную толщину электрода в зависимости от отношения H/L определяют по графику, приведенному на рис. 4.

Рисунок. 4. Зависимость между H / L и минимальной толщиной электрода:

где H – рабочий ход суппорта сварочного аппарата, мм (для аппарата А-480 H = 2300мм);

L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, которые находятся в пределах 150-200мм.

Найдя по графику минимальную толщину электрода, округляют до ближайшего целого и принимают толщину электрода, δ.

Зазор между кромками свариваемых деталей ( в) определяют по формуле:

(мм), (43)

где δ – толщина пластинчатого электрода, мм.

Величину сварочного тока I св на каждой фазе определяют по формуле:

I св = n ф ·В·i доп (А), (44)

где n ф – число фаз;

B – ширина электрода, мм;

i доп – удельный допустимый ток, (А/мм).

Глубину шлаковой ванны ( h шл ) в соответствии с удельным допустимым сварочным током, (i доп) находят по рис. 5.

Рисунок. 5. График для выбора S . ( V эл , h шв , U шв )

В процессе сварки допустимы отклонения от найденного значения не более ±3мм.

Напряжение на шлаковой ванне ( U ш.в . ) определяют по графику рисунка 5 по толщине пластинчатого электрода и скорости подачи электрода.

Для аппарата А-480 скорость подачи электрода, V п.э. = 1,03м/ч. В процессе сварки допустимы отклонения от найденного значения не более ± 1В.

Напряжение холостого хода ( U х.х. ) сварочного трансформатора зависит от степени жесткости характеристики источника питания.

При применении трансформатора ТШС – 3000- 3 следует принимать:

U х.х. = (U шв +2) · (В) при I св ≤ 1500А (45)

U х.х. = (U шв +4) · (В) при I св > 1500А

Полную длину электрода ( Z ) определяют по формуле:

Z= 1,2 · L (1+B+2-δ/δ)+T (мм) (46)

где L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, мм;

В – зазор между свариваемыми кромками, мм;

δ – толщина пластинчатого электрода, мм;

Т – технологический припуск для крепления электродов и токоподвода (Т = 300 мм).

Результаты расчетов режима электрошлаковой сварки пластинчатым электродом следует внести в табл. 24.

Таблица 24 - Режимы электрошлаковой сварки пластинчатым электродом

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых, углеродистых, низколегированных, теплоупрочненных сталей и поковок из титана приведены в приложении Г.

Заключение

Методические указания содержат подробную последовательность определения режимов различных видов сварки стыковых и угловых швов, с приведением необходимых формул, рисунков, графиков, номограмм.

В приложениях к указаниям приведены ориентировочные режимы сварки.

Полагаем, что данные указания будут успешно использованы при самостоятельной подготовке студентов к практическим работам или при выполнении раздела расчета режимов сварки, курсового (дипломного) проекта или работы.

Приложение А

Режимы ручной дуговой сварки стыковых швов без скоса кромок при односторонней и двусторонней сварке

Режимы ручной дуговой сварки V -образных стыковых швов

Ориентировочные режимы ручной дуговой сварки стыковых швов стали марки 30ХГС

Режимы ручной дуговой сварки стыковых и угловых соединений электродами ОММ-5

Приложение Б

Режимы полуавтоматической (механизированной) и автоматической сварки в углекислом газе низкоуглеродистых и низколегированных сталей

Оптимальные режимы сварки низкоуглеродистых и низколегированных сталей порошковыми проволоками

(нижнее положение)

Механические свойства швов при сварке низкоуглеродистых сталей порошковыми проволоками

Примерные режимы аргонодуговой сварки вольфрамовым электродом высоколегированных сталей

Примечание: Диаметр присадочной проволоки 1,6…2мм; ток постоянный прямой полярности.

Ориентировочные режимы аргонодуговой сварки встык плавящимся электродом высоколегированных сталей в нижнем положении

Ориентировочные режимы дуговой сварки высоколегированных сталей без разделки кромок плавящимся электродом в углекислом газе


Ориентировочные режимы аргонодуговой сварки алюминия трехфазной дугой

Толщина металла, мм

Способ сварки

Диаметр, мм

(V св ·10 3 , м/с)

Примечание

Вольфрамового электрода

Присадочной проволоки

Сварка на весу

Механизированная

Сварка без разделки кромок на подкладке

Механизированная

Механизированная

Примечание. Расход аргона 15…20 л/мин

Ориентировочные режимы аргонодуговой сварки вольфрамовым электродом магниевых сплавов

Объединение

Толщина листов, мм

Сварочный ток I св, А

Скорость сварки, м/ч

Присадочная проволока

Расход аргона, л/мин

Механизированная сварка

В стык, без разделки, один проход

Ручная сварка

Встык без разделки, один проход

Встык, с разделкой, три прохода


Режимы аргонодуговой сварки вольфрамовым электродом, рекомендуемые для листов титана


Режимы сварки титана и его сплавов плавящимся электродом в защитных газах

Приложение В

Режимы сварки под флюсом низкоуглеродистых и низколегированных сталей

Толщина металла или шва, мм

Подготовка кромок

Тип шва и способ сварки

Диаметр электропроводной проволоки, мм

Сила тока, А

Напряжение дуги, В

Скорость сварки, м/ч

А. Автоматическая сварка стыковых швов

Без разделки, зазор

V- образные

Односторонний

Двусторонний

Односторонний

1й проход 750…800

2й проход

Б. Автоматическая сварка угловых швов

Без разделки

Наклонным электродом

В лодочку

Примечание. Ток постоянный обратной полярности


Режимы сварки титана плавящимся электродом под флюсом

АНТ-1(скорость сварки 50м/ч)

Режимы однопроходной сварки по слою флюса одиночным электродом на формирующей подкладке алюминия и его сплава

Приложение Г

Режимы ЭШС углеродистых, низколегированных, теплоупрочненных сталей для прямолинейных стыков

V п.п. , м/ч

Сварочная проволока

Подогрев, 0 С

20, М16С, Ст3, 22К, 25Л, 09Г2,

25С, 25ГСЛ, 10ХСНД, 10ХГСНД

Св-08ХГ2СМ

АН-8М, АН-8

35, 35Л, Ст5, 20Х2МА

Св-08ХГ2СМ

Св-08Х3Г2СМ

АН-8М, АН-8, АН-22

Св-10ХГН2МЮ

АН-8, АН-8М, АН-22

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых сталей

Толщина металла, мм

Сила тока на один электрод, А

Напряжение сварки, В

Число электродов

Диаметр (сечение) электро-дов, мм

Расстояние между электродами

Скорость, м/ч

подачи электродов

Проволочный электрод

Технология сварки углеродистых сталей

Режимы электрошлаковой сварки поковок из титана пластинчатым электродом

5. Список используемой литературы:

Основная:

1. Думов С.И. Технология электрической сварки плавлением. - М.: Машиностроение, 1987. - 347 с.

2. Думов С.И., «Технология электрошлаковой сварки плавлением». – М.: Машиностроение, - 1987г.

3. Маслов В.И. Сварочные работы. Изд-во М., 1999. - 246 с.

4. Окерблом Н.О., Демянцевич В.П., Байкова И.П., Проектирование технологии изготовления сварных конструкций. – Ленинград: 1983г.

5. Потапьевский А.Г., «Сварка в защитных газах плавящимся электродом». – М.: Машиностроение. – 1974.- 237 с.

6. Сварка и свариваемые материалы: В 3-х т. Т. 1. Свариваемость материалов / Под. ред. Э.Л. Макарова. – М.: Металлургия, 1991. – 528с.

Т.2 Технология и оборудование / Под. ред. В.М. Ямпольского. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. – 574с.

Дополнительная:

1. ГОСТ 5264-80 – Ручная дуговая сварка соединения сварные. Основные типы и конструктивные элементы.

2. ГОСТ 8713-79 – Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры.

3. ГОСТ 14771 – 76 – Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы.

4. ГОСТ 15164-78 – Электрошлаковая сварка соединения сварные. Основные типы, размеры конструктивных элементы и размеры.

Рассчитаем режим полуавтоматической сварки в среде защитных газов для стыкового соединения. Тип разделки С12 по ГОСТ 14771-76.

Рисунок – Разделка кромок C12

Подварка корня шва (шов А):

где s – толщина металла, мм; Задаемся током =120 А

1) Сварочный ток определим по формуле (2.15):

где a - плотность тока в электродной проволоке, А/мм 2 (При сварке в СО 2 а=110…130 А/мм 2 ;)

d э – диаметр электродной проволоки, мм.

Принимаем I св = 130…140 А.

Принимаем U д = 26 В.

Исходя из этого определим скорость сварки по формуле:

то есть входит в предел скоростей 15…37 м/ч для механизированной сварки. Принимаем V св = 22 м/ч, (0,6 см/с).

4) Рассчитаем погонную энергию принимая значения эффективного к.п.д. нагрева изделия дугой при сварке в смеси СО 2 ŋ и= 0,80.

где k = 0,79 (коэффициент, зависящий от рода и полярности тока)

8) При сварке в смеси СО 2 вылет электрода l выбирают в пределах 10-20 мм

9) Определяем коэффициент наплавки α н

α н τ =

10) Скорость подачи электродной проволоки определим из условия:

(2.39)

Определяем высоту валика. При сварке в углекислом газе в диапазоне режимов, обеспечивающих удовлетворительное формирование шва, коэффициент полноты валика изменяется в узких пределах и практически равен µ В =0,73.

12) Высота валика равна (мм):

С=Н+ =3 + 1,28 = 4,28 мм (2.28)

Ψ в = (2.29)

Ψ в должен находиться в пределах 7 ÷ 10

Заполнение разделки шов Б (9 проходов):

где s – толщина металла, мм; Задаемся током = 190А

1) сварочный ток определим по формуле (2):

Принимаем U д = 28 В.

3) Как известно из практики, шов формируется удовлетворительно тогда, когда произведение силы тока (А) на скорость сварки (м/час) при автоматической сварке электродной проволокой диаметром 1,2 мм находится в пределах 2000…5000.

Исходя из этого определим скорость сварки по формуле (7):

Принимаем V св = 19 м/ч, (0,52 см/с).

4) Рассчитаем погонную энергию, принимая значения эффективного к.п.д. нагрева изделия дугой ŋ и= 0,80

5) Определяем коэффициент формы провара по формуле:

где k = 0,79 (коэффициент, зависящий от рода и полярности тока)

6) Определяем глубину провара Н (см) при сварке в защитном газе:

7) Определяем ширину шва е (мм):

8) При сварке в смеси CO 2 вылет электрода l выбирают в пределах 10-20 мм.

9) Определяем коэффициент наплавки α н:

α н τ =

α р τ =

10) скорость подачи электродной проволоки определим из условия:

(2.39)

где α н – коэффициент наплавки;

γ – удельный вес металла для стали γ=7,8 г/см 3 .

11) F н – площадь металла, наплавленного за данный проход (см 2);

Определяем высоту валика. При сварке в смеси газов в диапазоне режимов, обеспечивающих удовлетворительное формирование шва, коэффициент полноты валика изменяется в узких пределах и практически равен µ В =0,73. Тогда:

12) высота валика равна (мм):

13) Определяем общую высоту шва С (мм):

С=Н+ = 5.3 + 1,31 = 6,61 мм (2.43)

14) Определяем коэффициент формы усиления:

Ψ в = (2.44)

Для хорошо сформированных швов Ψ в должен находиться в пределах 7…10. Малые значения Ψ в имеют место при узких высоких швах, такие швы не имеют плавного сопряжения с основным металлом и обладают неудовлетворительной работоспособностью при переменных нагрузках. Большие значения Ψ в соответствуют широким и низким усилениям, такие швы нежелательны по тем же причинам, что и швы с чрезмерно большим значением Ψ в, а также в связи с возможным уменьшением сечения шва по сравнению с сечением основного металла из-за колебаний уровня жидкой ванны.

Определим усредненный химический состав металла шва при сварке стали 09Г2С проволокой Filarс PZ6114S.

Рисунок 11– Схема к расчету площадей проплавленного и наплавленного металла

где |х| ш, |х| ом, |х| э – концентрация рассматриваемого элемента в металле шва, основном и электродном металле;

γ о – доля участия основного металла в формировании шва, определяется по формуле.

, (44)

где Vсв – скорость сварки, м/ч;

α н – коэффициент наплавки, г/Ач;

Iсв – сварочный ток, А;

Fн – площадь поперечного сечения, мм²;

γ – плотность наплавленного металла, г/см³;

0,9 – коэффициент, учитывающий потери на угар и разбрызгивание.

Коэффициент наплавки, г/Ач определяется по формуле, г/Ач

α н = α р (1 – ψ / 100), (45)

где ψ – потеря электродного металла вследствие окисления, испарения и разбрызгивания, % (ψ = 7-15%, принимают обычно ψ = 10%). Потери электродного металла возрастают с увеличением напряжения на дуге.

Напряжение на дуге принимают в интервале 16-34В. Большие значения соответствуют большей величине тока. Напряжение можно определить по графику (см. рисунок 11).

Рисунок 11

Напряжение на дуге предварительно подбирается и может быть установлено при настройке, например, по напряжению холостого хода источника тока. К параметрам режима сварки в среде углекислого газа относится удельный расход газа – q г, который зависит от положения шва в пространстве, скорости сварки, типа соединения и толщины свариваемого металла . Параметры режима сварки свести в таблицу 15

Таблица 15

2.8 Проектирование сборочно-сварочных приспособлений, выбор и обоснование выбора оборудования

Выбор и проектирование сборочно-сварочных приспособлений производится в соответствии с предварительно избранными способами сборки и сварки узлов и в целом заданной конструкции. Этот этап проектирования технологического процесса является одним из основных. Поэтому при разработке техпроцесса сборочно-сварочных работ на заданную конструкцию необходимо установить рациональный качественный и количественный состав требуемой оснастки и технологического оборудования.

Выбрать и обосновать выбор сборочно-сварочного механического оборудования с учетом его грузоподъемности, габаритных размеров изготавливаемых сварных конструкций, надежности и удобства в работе, безопасности и других технических параметров.

Описать кратко устройство и назначение узлов оборудования, принцип его работы, привести технические характеристики оборудования в виде таблиц или в виде пояснительной записке, или на втором чертеже курсового проекта.

Студент может предложить модернизацию выбранного оборудования. Не следует применять морально-устаревшее оборудование. При проектировании выполнить на втором чертеже курсового проекта приспособление для сборки и сварки заданного изделия, а в пояснительной записке выполнить компоновочный эскиз оборудования в двух проекциях одного из рабочих мест проектируемого техпроцесса и наоборот. .

Даже начинающие сварщики знают, что во время сварочных работ используются разные комплектующие, такие как проволока или . И если для работы сварочного аппарата необходим лишь доступ к электричеству и можно работать бесконечно, то комплектующие имеют свойство заканчиваться. Чтобы материалы не заканчивались в самый неподходящий момент их количество можно предварительно рассчитать. Это особенно полезно при ремонте, поскольку можно рассчитать себестоимость сварочных работ и назвать заказчику точную цену.

В этой статье мы подробно объясним, как произвести расчет проволоки, приведем пример расчета и расскажем обо всех особенностях.

Прежде чем производить расчет расхода сварочной проволоки ознакомьтесь со всеми особенностями присадочного материала, используемого в работе. Прежде всего, проволока может иметь разный коэффициент наплавки, что существенно влияет на итоговые цифры в расчете.

Если вы используете проволоку для сварки автоматическим или сварочным оборудованием, то расчет расхода сварочных комплектующих просто необходим. При сварке это необязательно, но и лишним тоже не будет. Поскольку при таких видах сварки рекомендуется не прерывать сварочный шов, а этого можно добиться только после точного расчета количества проволоки. Лучше знать заранее расход сварочной проволоки при сварке полуавтоматом, чем впоследствии исправлять ошибки.


Существует такое понятие, как норма расхода материала. При этом в норму входит не только количество проволоки, но и ее перерасход на случай ошибок сварщика или непредвиденных обстоятельств. При расчете учитываются все этапы сварки: от подготовительных до заключительных. Это можно сравнить со строительной сметой. Зная необходимое количество, скажем, кирпича, вы заранее знаете, какой высоты и толщины получатся стены. Давайте подробнее поговорим о нормах расхода сварочных материалов.

Нормы расхода

При или при аргонодуговой сварке существуют свои нормы расхода проволоки, которые прописаны в нормативных документах. Они взяты не из «воздуха», а рассчитаны исходя из имеющегося опыта, накопленного у профессиональных сварщиков. Каждый тип сварки и тип проволоки имеет свои физические и химические свойства, которые нужно учитывать при расчете, поэтому нельзя назвать точные цифры расхода материала для всех сварок сразу. Тем не менее, есть приблизительные общие значения, которые вы можете видеть на таблице ниже. Таблица ознакомительная, не принимайте эти цифры всерьез, проводите расчеты самостоятельно.

Чаще всего рассчитывают расход сварочной проволоки на 1 метр . Это очень удобно, поскольку можно легко и быстро произвести последующие расчеты на увеличение или уменьшение количества материала для шва. В интернете можно легко найти калькулятор расхода сварочных материалов, который упростит расчеты. Но мы рекомендуем научиться самому рассчитывать количество проволоки.

Как рассчитать расход

Расход сварочных материалов при сварке или расход проволоки при сварке на один метр шва производится по следующей формуле:

N = G*К

Где «N» - это искомый параметр или, говоря другими словами, норма расхода проволоки на 1 метр, которую нам нужно рассчитать. «G» - это масса наплавки на готовом сварочном , опять же длинной в один метр. А «К» – это коэффициент поправки, который зависит от массы наплавленного материала к расходу металла, который потребовался для сварки. Чтобы выяснить значение G (масса наплавки на сварном соединении) нам потребуется эта формула:

G = F*y*L

Буква «F» обозначает площадь поперечного сечения шва в квадратных метрах. Буква «у» - это плотность металла, из которого изготовлена проволока.

Обратите внимание! Значение «у» крайне важно, поскольку каждая марка проволоки может существенно отличаться по весу из-за металла, используемого для ее изготовления.

Значение «L» автоматически замещается цифрой 1, поскольку мы рассчитываем именно 1 метр. Если вам необходимо рассчитать более или менее метра, то используйте другую цифру. С помощью этих формул можно рассчитать расход проволоки при нижнем сваривании. Для других способов сварки нужно итоговую цифру «N» умножить на значение «К» , отличное от 1.

Значение «К» изменяется в соответствии с положением:

  • При нижнем положении «К» равен цифре 1
  • При полувертикальном - 1.05
  • При вертикальном - 1.1
  • При полотолочном - 1.2

Если вы варите металл с помощью полуавтомата, учитывайте , используемый в работе, характеристики вашего сварочного аппарата, диаметр проволоки и особенности деталей.

Благодаря этим простым расчетам вы сможете легко узнать количество проволоки, необходимой для сварки деталей при аргонодуговой сварке или любом другом виде сварочных работ. Учитывайте все особенности вида сварки и используемой проволоки, чтобы расчеты получились точными.

Пример расчета

Чтобы лучше понять принцип расчета, приведем пример. Итак, какой будет расход присадочной проволоки при сварке , если в качестве свариваемого металла будет использоваться обычная сталь? Начнем с расчета веса наплавки, нам пригодится формула G = F*y*L .

G=0,0000055 (м2) * 7850 (кг/м3) * 1 (метр) = 0,043 кг

После этого можно приступать к вычислению основного значения по формуле N=G*К

N = 0,043 * 1 = 0,043 кг

Учитывайте, что сварка производится в нижнем положении. Это значит, то коэффициент поправки равен единице, а итоговое значение не меняется.

Вместо заключения

Теперь вы знаете, как произвести расчет и узнать расход сварочной проволоки при сварке полуавтоматом или при любом другом виде сварки. Не думайте, что этот навык вам не пригодится. Напротив, он открывает для вас новые возможности. Делитесь этим материалом в социальных сетях, чтобы помочь другим начинающим сварщикам. Желаем удачи в работе!

Почти всегда выигрышный вариант. Благодаря такому комплекту оборудования вам становится доступна качественная и быстрая сварка сталей, алюминия, меди и прочих металлов. Но есть и особенности, которые сварщик должен учитывать перед тем, как выберет данный метод сварки.

Прежде всего, полный новичок вряд ли сможет выполнить работу качественно. Это связано не только с отсутствием опыта, но и с тем фактом, что полуавтомат нужно правильно настроить и выбрать необходимые расходники. Опытные мастера говорят: «Чтобы настроить режимы сварки полуавтоматом в среде защитных газов нужно потратить несколько лет на изучение литературы, ГОСТов и кропотливую работу. Без практики ничего не получится».

Мы полностью согласны с этим утверждением. Но не спешим сбрасывать со счетов начинающих сварщиков. Специально для них мы подготовили краткую статью, которая поможет разобрать с режимами сварки и начать применять полученную информацию на практике. При составлении этой статьи мы руководствовались не только собственным опытом, но и справочной литературой.

Чтобы правильно подобрать режимы полуавтоматической сварки нужно четко понимать, из чего состоят эти режимы. Далее мы перечислим основные параметры режимов сварки, зная которые вы сможете правильно выбрать настройки полуавтомата.

Диаметр и марка проволоки

Начнем с диаметра проволоки. Он может колебаться в пределах от 0.5 до 3 миллиметров. Обычно, диаметр проволоки подбирается исходя из толщины свариваемого металла. Но в любом случае у каждого диаметра есть свои характерные признаки. Например, при работе с проволокой малого диаметра мастера отмечают более устойчивое горение и меньший коэффициент разбрызгивания металла. А при работе с проволокой большего диаметра всегда требуется увеличивать силу тока.

Не стоит забывать и о марке применяемой проволоки. А точнее, металле, из которого проволока изготовлена и какие вещества входят в ее состав. Например, для сварки низкоуглеродистой или низколегированной стали рекомендуется использовать проволоку с раскислителями, а в составе должен присутствовать марганец и кремний.

Но, справедливости ради, в среде защитного газа зачастую либо легированную, либо высоколегированную сталь. В таких случаях используют проволоку, изготовленную из того же металла, что и деталь, которую нужно сварить. Обратите внимание на выбор проволоки, ведь при неправильном выборе шов может получиться пористым и хрупким.

Сила, полярность и род сварочного тока

Помимо выбора комплектующих нам также нужно настроить сам полуавтомат. В типичном полуавтомате даже самого низкого ценового сегмента вы сможете настроить силу, полярность и род сварочного тока. У каждого параметра также есть свои особенности. Например, если увеличить силу тока, то глубина провара увеличиться. Силу тока устанавливают, опираясь на диаметр электрода и особенности металла, с которым собираются работать.

Теперь о полярности и роде тока. Общепринято выполнять полуавтоматическую сварку в среде защитного газа, установив постоянный ток и обратную полярность. Переменный род тока или прямая полярность применяются очень редко, поскольку такие настройки не обеспечивают устойчивое горение дуги и способствуют ухудшению качества сварного соединения. Но есть исключение из правил. Так переменный ток показан при сварке , например.

Также многие новички забывают о таком параметре, как напряжение сварочной дуги. А вместе с тем именно напряжение дуги влияет на глубину провара металла и размер сварочного соединения. Не стоит устанавливать слишком большое напряжение, иначе металл начнем разбрызгиваться, в шве образуются поры, а газ не сможет в должной мере защитить сварочную зону. Чтобы правильно настроить напряжение дуги ориентируйтесь на силу сварочного тока.

Скорость подачи проволоки

Как вы знаете, в полуавтоматической сварке проволока подается с помощью специального механизма. Он работает очень точно, поэтому необходимо заранее установить оптимальную скорость подачи присадочной проволоки, чтобы она вовремя плавилась и способствовала формированию качественного шва. Настраивайте скорость с учетом силы тока. В идеале проволока должна подаваться так, чтобы дуга сохраняла свою устойчивость, а шов формировался постепенно.

Скорость сварки

Не менее важна и скорость сварки. От нее во многом зависят физические размеры шва. Скорость регулируется ГОСТами, но ее можно выбрать и по своему усмотрению, опираясь на особенности металла и его толщину. Учтите, что толстый металл нужно варить быстрее, а шов должен быть узким. Но не стоит слишком спешить, иначе электрод может просто выйти из зоны защитного газа и окислиться под воздействием кислорода. Ну а слишком медленная скорость способствует формированию непрочного пористого шва.

Наклон электрода

И последний важный параметр, а именно угол наклона при сварке. Наиболее частая ошибка у новичков - держать электрод так, как физически удобно. Это грубейшее нарушение. Ведь угол наклона электрода напрямую влияет на то, какова будет глубина провара и насколько качественным получится шов в конечном итоге.

Существует два типа наклона: углом назад и углом вперед. У каждого положения есть свои достоинства и недостатки. При сварке углом вперед зона сварки видна хуже, зато лучше видны кромки. Также глубина провара меньше. А при сварке углом назад наоборот зона сварки видна намного лучше, но глубина провара увеличивается.

Таблицы

Да, опытные мастера с ходу способны подобрать правильный режим сварки, поскольку их опыт и знания позволяют. Но что делать новичкам? Им поможет специальная таблица для настройки режима. Точнее, таблицы, для каждого типа сварки. Но не стоит злоупотреблять готовыми настройками, экспериментируйте и не бойтесь применять на практике свой опыт.

Таблица №1. Рекомендуемые настройки для формирования стыкового шва в нижнем пространственном положении и сварки низкоуглеродистой и низколегированной стали в среде защитного газа (углекислого газа, смеси углекислоты с кислородом, а также смеси с углекислым газом) током обратной полярности.

Рассказать друзьям