Полная электролиты. Шпаргалка "электролиты и неэлектролиты". Смотреть что такое "Электролиты" в других словарях

💖 Нравится? Поделись с друзьями ссылкой

Электролиты – вещества, расплавы или растворы которых проводят электрический ток. К электролитам относятся кислоты, основания и большинство солей.

Диссоциация электролитов

К электролитам относятся вещества с ионной или сильнополярной ковалентной связью. Первые в виде ионов существуют еще до перевода их в растворенное или расплавленное состояние. К электролитам относятся соли, основания, кислоты.

Рис. 1. Таблица отличие электролитов от неэлектролитов.

Различают сильные и слабые электролиты. Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся: почти все растворимые соли, многие неорганические кислоты (например, H 2 SO 4 , HNO 3 , HCl), гидроксиды щелочных и щелочноземельных металлов. Слабые электролиты при растворении в воде незначительно диссоциируют на ионы. К ним относятся почти все органические кислоты, некоторые неорганические кислоты (например, H 2 CO 3), многие гидроксиды (кроме гидроксидов щелочных и щелочноземельных металлов).

Рис. 2. Таблица сильные и слабые электролиты.

Вода также является слабым электролитом.

Как и другие химические реакции, электролитическую диссоциацию в растворах записывают в виде уравнений диссоциации. При этом для сильных электролитов рассматривают процесс как идущий необратимо, а для электролитов средней силы и слабых – как обратимый процесс.

Кислоты – это электролиты, диссоциация которых в водных растворах протекает с образованием ионов водорода в качестве катионов. Многоосновные кислоты диссоциируют ступенчато. Каждая следующая ступень идет все с большим и большим трудом, так как образующиеся ионы кислотных остатков являются более слабыми электролитами.

Основания – электролиты, диссоциирующие в водном растворе с образованием гидроксид-иона ОН- в качестве аниона. Образование гидроксид-иона является общим признаком оснований и обуславливает общие свойства сильных оснований: щелочной характер, горький вкус, мылкость на ощупь, реакцию на индикатор, нейтрализацию кислот и т. д.

Щелочи, даже малорастворимые (например, гидроксид бария Ba(OH) 2) диссоциируют нацело, пример:

Ba(OH) 2 =Ba 2 +2OH-

Соли – это электролиты, диссоциирующие в водном растворе с образованием катиона металла и кислотного остатка. Соли диссоциируют не ступенчато, а нацело:

Сa(NO 3) 2 =Ca 2 + +2NO 3 –

Теория электролитической диссоциации

Электролиты – вещества, подвергающиеся в растворах или расплавах электролитической диссоциации и проводящие электрический ток за счет движения ионов.

Электролитической диссоциацией называется распад электролитов на ионы при растворении их в воде.

Теория электролитической диссоциации (С. Аррениус, 1887) в современном понимании включает следующие положения:

  • электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные (катионы) и отрицательные (анионы). Ионизация происходит легче всего для соединений с ионной связью (солей, щелочей), которые при растворении (эндотермический процесс разрушения кристаллической решетки) образуют гидратированные ионы.

Рис. 3. Схема электролитической диссоциации соли.

Гидратация ионов – экзотермический процесс. Соотношение затраты и выигрыша энергии определяет возможность ионизации в растворе. При растворении вещества с полярной ковалентной связью (например, хлороводород HCl) диполи воды ориентируются у соответствующих полюсов растворяемой молекулы, поляризую связь и превращая ее в ионную с последующей гидратацией ионов. Этот процесс является обратимым и может идти как полностью, так и частично.

  • гидратированные ионы устойчивы, беспорядочно передвигаются в растворе. Под действием электрического тока движение приобретает направленный характер: катионы движутся к отрицательному поясу (катоду), а анионы – к положительному (аноду).
  • диссоциация (ионизация) – обратимый процесс. Полнота ионизации зависит от природы электролита (соли щелочи диссоциируют практически нацело), его концентрации (с увеличением концентрации ионизация идет труднее), температуры (повышение температуры способствует диссоциации), природы растворителя (ионизация происходит только в полярном растворителе, в частности, в воде).

Инструкция

Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные ( «-») к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).

Степень (a) электролитической диссоциации находится в зависимости от самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N

Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, вещества с сильнополярными или ионными связями: это соли, которые хорошо растворимы, сильные кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные - практически нет.

Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.

К слабым относятся:
- органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
- некоторые из неорганических кислот (H2S, H2CO3 и пр.);
- практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
- вода.

Они практически не проводят электрический ток, или проводят, но плохо.

Обратите внимание

Хотя чистая вода проводит электрический ток очень плохо, она все-таки имеет измеримую электрическую проводимость, объясняемую тем, что вода немного диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет

Большинство электролитов – вещества агрессивные, поэтому при работе с ними будьте предельно осторожны и соблюдайте правила техники безопасности.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Почему происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах или расплавах диссоциируют на положительно заряженные и отрицательно заряженные ионы, благодаря чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами обладает большинство солей, кислот, оснований.

Инструкция

Какие вещества относятся к сильным ? Такие вещества, в растворах или расплавах которых подвергаются практически 100% молекул, причем вне зависимости от концентрации раствора. В перечень входит абсолютное большинство растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в гораздо меньшей степени (на ионы распадаются от 3% до 30% молекул). Классические представители таких электролитов – серная и ортофосфорная кислоты.

В разделе на вопрос Какие вещества являются электролитами? заданный автором Ольга Дубровина лучший ответ это Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. Сильные электролитыЭто вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2,Sr(OH)2,Ca(OH)2).В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов) ; недиссоциированные молекулы практически отсутствуют.Слабые электролитыВещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.К слабым электролитам относятся:1) почти все органические кислоты (CH3COOH, C2H5COOH и др.) ;2) некоторые неорганические кислоты (H2CO3, H2S и др.) ;3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);4) вода.Они плохо (или почти не проводят) электрический ток.СH3COOH « CH3COO- + H+Cu(OH)2 « + + OH- (первая ступень)+ « Cu2+ + OH- (вторая ступень)H2CO3 « H+ + HCO- (первая ступень)HCO3- « H+ + CO32- (вторая ступень)

Ответ от Просянка [гуру]
кислоты, щелочи и некоторые соли


Ответ от Европейский [гуру]
Да, кислоты, соли и шелочи, а вообще те кто в растворенном состоянии проводят так в в чистом виде не проводят


Ответ от Приспособляемость [гуру]
Любые, диссоциирующие в воде на ионы..: -))


Ответ от Аnel Saduakasova [новичек]
ЭЛЕКТРОЛИТАМИ называются растворы солей, кислот и щелочей, а также расплавы солей и металлов. Электролиты являются хорошими проводниками электрического тока.


Ответ от Ўлия Титова [новичек]
все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2,Sr(OH)2,Ca(OH)2).


Ответ от Ёhlana [мастер]
К электролитам относятся: кислоты, соли, щелочи


Ответ от Лин Квон [новичек]
С ионным и ковалентным полярным типом химической связи.

К электролитам относят кислоты, основания и соли. В их молекулах есть ионные либо ковалентные сильно полярные связи. К неэлектролитам относят, к примеру, водород, кислород, сахар, эфир и многие другие органические вещества. В молекулах этих веществ присутствуют ковалентные малополярные и неполярные связи.

Теория электролитической диссоциации С. Аррениуса

Теория электролитической диссоциации, созданная С. Аррениусом в 1887 году, позволяет объяснить электропроводность растворов и расплавов электролитов. Дело в том, что молекулы кислот, солей и оснований при растворении или расплавлении распадаются на ионы – положительно и отрицательно заряженные. Этот процесс называется диссоциацией, или ионизацией.

Сами по себе ионы в растворе или расплаве движутся хаотически. Кроме того, помимо диссоциации идет одновременно и противоположный процесс – соединение ионов в молекулы ( , или моляризация). Из этого можно сделать вывод, что диссоциация обратима.

При пропускании электрического тока через раствор или расплав электролита положительно заряженные ионы начинают двигаться к отрицательно заряженному электроду (катоду), а отрицательно заряженные – к положительно заряженному (аноду). Поэтому ионы первого типа назвали «катионами», а второго типа – «анионами». Катионами могут быть ионы металлов, ион водорода, ион аммония и т.д. В роли анионов выступают гидроксид-ион, ионы кислотных остатков и другие.

Степень диссоциации, сильные и слабые электролиты

Различные электролиты в водных растворах могут распадаться на ионы полностью или не полностью. Первые называют сильными , вторые – слабыми. Число, показывающее, какая часть из растворенных молекул диссоциировала на ионы, называется степенью диссоциации α.

Сильные электролиты – это сильные кислоты, все соли и растворимые в воде основания – щелочи. Сильными кислотами являются хлорная, хлорноватая, серная, азотная, соляная, бромоводородная, и ряд других. К щелочам относятся гидроксиды щелочных и щелочноземельных металлов – лития, натрия, калия, рубидия, цезия, кальция, стронция и бария.

Отличные проводники электрического тока — золото, медь, железо, алюминий, сплавы. Наряду с ними существует большая группа веществ-неметаллов, расплавы и водные растворы которых тоже обладают свойством проводимости. Это сильные основания, кислоты, некоторые соли, получившие общее название "электролиты". Что такое ионная проводимость? Выясним, какое отношение имеют вещества-электролиты к этому распространенному явлению.

Какие частицы переносят заряды?

Мир вокруг полон различных проводников, а также изоляторов. Об этих свойствах тел и веществ известно с глубокой древности. Греческий математик Фалес провел опыт с янтарем (на греческом — «электрон»). Потерев его о шелк, ученый наблюдал явление притяжения волос, волокон шерсти. Позже стало известно, что янтарь является изолятором. В этом веществе нет частиц, которые могли бы переносить электрический заряд. Хорошие проводники — металлы. В их составе присутствуют атомы, положительные ионы и свободные, бесконечно малые отрицательные частицы — электроны. Именно они обеспечивают перенос зарядов, когда пропускают ток. Сильные электролиты в сухом виде не содержат свободных частиц. Но при растворении и расплавлении происходит разрушение кристаллической решетки, а также поляризация ковалентной связи.

Вода, неэлектролиты и электролиты. Что такое растворение?

Отдавая или присоединяя электроны, атомы металлических и неметаллических элементов превращаются в ионы. Между ними в кристаллической решетке существует достаточно прочная связь. Растворение или расплавление ионных соединений, например, хлорида натрия, приводит к ее разрушению. В полярных молекулах нет ни связанных, ни свободных ионов, они возникают при взаимодействии с водой. В 30-х годах XIX века М. Фарадей обнаружил, что растворы некоторых веществ проводят ток. Ученый ввел в науку такие важнейшие понятия:

  • ионы (заряженные частицы);
  • электролиты (проводники второго рода);
  • катод;
  • анод.

Есть соединения - сильные электролиты, кристаллические решетки которых полностью разрушаются с освобождением ионов.

Существуют нерастворимые вещества и те, что сохраняются в молекулярном виде, например, сахар, формальдегид. Такие соединения называются неэлектролитами. Для них не характерно образование заряженных частиц. Слабые электролиты (угольная и уксусная кислота, и ряд других веществ) содержат мало ионов.

Теория электролитической диссоциации

В своих работах шведский ученый С. Аррениус (1859-1927) опирался на выводы Фарадея. В дальнейшем уточнили положения его теории русские исследователи И. Каблуков и В. Кистяковский. Они выяснили, что при растворении и расплавлении образуют ионы не все вещества, а только электролиты. Что такое диссоциация по С. Аррениусу? Это и есть разрушение молекул, которое приводит к появлению заряженных частиц в растворах и расплавах. Основные теоретические положения С. Аррениуса:

  1. Основания, кислоты и соли в растворах находятся в диссоциированном виде.
  2. Обратимо распадаются на ионы сильные электролиты.
  3. Слабые образуют мало ионов.

Показателем вещества (ее часто выражают в процентах) является соотношение числа молекул, распавшихся на ионы, и общего количества частиц в растворе. Электролиты являются сильными, если значение этого показателя свыше 30%, у слабых — менее 3%.

Свойства электролитов

Теоретические выводы С. Аррениуса дополнили более поздние исследования физико-химических процессов в растворах и расплавах, проведенные русскими учеными. Получили объяснение свойства оснований и кислот. К первым относят соединения, в растворах которых из катионов можно обнаружить только ионы металла, анионами являются частицы OH - . Молекулы кислот распадаются на отрицательные ионы кислотного остатка и протоны водорода (H +). Движение ионов в растворе и расплаве — хаотичное. Рассмотрим результаты опыта, для которого потребуется собрать цепь, включить в нее и обыкновенную лампочку накаливания. Проверим проводимость растворов разных веществ: поваренной соли, уксусной кислоты и сахара (первые два - электролиты). Что такое электрическая цепь? Это источник тока и проводники, соединенные между собой. При замыкании цепи лампочка будет гореть ярче в растворе поваренной соли. Движение ионов приобретает упорядоченность. Анионы направляются к положительному электроду, а катионы — к отрицательному.

В этом процессе в уксусной кислоте участвует небольшое количество заряженных частиц. Сахар не является электролитом, не проводит ток. Между электродами в этом растворе окажется изолирующий слой, лампочка гореть не будет.

Химические взаимодействия между электролитами

При сливании растворов можно наблюдать, как ведут себя электролиты. Что такое ионные уравнения подобных реакций? Рассмотрим на примере химического взаимодействия между и нитратом натрия:

2NaNO 3 + BaCl 2 + = 2NaCl + Ba(NO 3) 2 .

Формулы электролитов запишем в ионном виде:

2Na + + 2NO 3- + Ba 2+ + 2Cl - = 2Na + + 2Cl - + Ba 2+ + 2NO 3- .

Взятые для реакции вещества - сильные электролиты. В этом случае состав ионов не меняется. Химическое взаимодействие между возможно в трех случаях:

1. Если один из продуктов является нерастворимым веществом.

Молекулярное уравнение: Na 2 SO 4 + BaCl 2 = BaSO 4 + 2NaCl.

Запишем состав электролитов в виде ионов:

2Na + + SO 4 2- + Ba 2+ + 2Cl - = BaSO 4(белый осадок) + 2Na + 2Cl - .

2. Одно из образовавшихся веществ — газ.

3. Среди продуктов реакции есть слабый электролит.

Вода — один из наиболее слабых электролитов

Химически чистая не проводит электрический ток. Но в ее составе есть небольшое количество заряженных частиц. Это протоны Н + и анионы ОН - . Диссоциации подвергается ничтожно малое число молекул воды. Существует величина — ионное произведение воды, которая является постоянной при температуре 25 °C. Она позволяет узнать концентрации Н + и ОН - . Преобладают ионы водорода в растворах кислот, гидроксид-анионов больше в щелочах. В нейтральных — совпадает количество Н + и ОН - . Среду растворов также характеризует водородный показатель (рН). Чем он выше, тем больше присутствует гидроксид-ионов. Среда является нейтральной при интервале рН близком к 6-7. В присутствии ионов Н + и ОН - изменяют свой цвет вещества-индикаторы: лакмус, фенолфталеин, метилоранж и другие.

Свойства растворов и расплавов электролитов находят широкое применение в промышленности, технике, сельском хозяйстве и медицине. Научное обоснование заложено в работах ряда выдающихся ученых, объяснивших поведение частиц, из которых состоят соли, кислоты и основания. В их растворах протекают многообразные реакции ионного обмена. Они используются во многих производственных процессах, в электрохимии, гальванике. Процессы в живых существах также происходят между ионами в растворах. Многие неметаллы и металлы, токсичные в виде атомов и молекул, незаменимы в виде заряженных частиц (натрий, калий, магний, хлор, фосфор и другие).

Рассказать друзьям