Схема удвоения напряжения на диодах и конденсаторах. Умножители напряжения. Модели низкой пульсации

💖 Нравится? Поделись с друзьями ссылкой
В радиолюбительской практике часто требуется несколько напряжений для питания слаботочных узлов (специализированных микросхем, предварительных усилителей и т.п.), а имеющийся источник питания выдает одно напряжение. Чтобы не искать трансформатор с дополнительными обмотками, можно воспользоваться схемами умножения напряжения. Схема ниже:

Предлагаем еще несколько схем умножения напряжения. Изображена мостовая двухтактная схема удвоения напряжения. В этой схеме частота пульсаций выпрямленного напряжения равна удвоенной частоте сети (fn=2fc), обратное напряжение на диодах в 1,5 раза больше выпрямленного, коэффициент использования трансформатора - 0,64. Ее можно представить в виде двух последовательно включенных однополупериодных схем, работающих от одной обмотки трансформатора и подключенных к общей нагрузке. Если среднюю точку (точку соединения конденсаторов) подключить к общему проводу, получится двухполярный источник с выходным напряжением ±U.
Вторая схема удвоения напряжения показана на рисунке 2, который вы видите ниже:
В ней вход (вторичная обмотка трансформатора) и выход имеют общую точку, что в ряде случаев может оказаться полезным. Здесь в течение отрицательного полупериода входного напряжения конденсатор С1 заряжается через диод VD2 до напряжения, равного амплитудному значению U-1. Во время положительного полупериода диод VD2 закрыт, а конденсатор С1 оказывается включенным последовательно с вторичной обмоткой Т1, поэтому конденсатор С2 через диод VD1 заряжается до удвоенного значения напряжения. Добавив к данной схеме еще один диод и конденсатор, получим варианты утроителей напряжения, которые представлены на следущих рисунках:
Схему на рис.2 можно каскадировать и получать весьма высокие напряжения. Такой каскадный умножитель представлен на рисунке:

В этой схеме все конденсаторы, за исключением С1, заряжаются до удвоенного напряжения Ui (Uc=2Ui), а С1 заряжается только до Ui. Таким образом, рабочее напряжение конденсаторов и диодов получается достаточно низким. Максимальный ток через диоды определяется выражением:

lmax=2,1IH ,
где lH-ток, потребляемый нагрузкой.

Необходимая емкость конденсаторов в этой схеме определяется по приближенной формуле:

С=2,85N*Iн/(Кп*Uвых) , Мкф

Где N-кратность умножения напряжения;
IН - ток нагрузки, мА;
Кп - допустимый коэффициент пульсаций выходного напряжения, %;
Uвыlx-выходное напряжение, В.

Емкость конденсатора С1 необходимо увеличить в 4 раза по сравнению с расчетным значением (хотя в большинстве случаев хватает и двух-трех- кратного увеличения). Конденсаторы должны быть с минимальным током утечки (типа К73 и аналогичные).

Умножать напряжение можно и с помощью мостовых выпрямителей. Схема ниже на рисунке 6:

Здесь удобно взять малогабаритные выпрямительные мосты, например, серий RB156, RB157 и аналогичные. Конденсаторы СЗ...С6 (и далее) - емкостью 0,22...0,56 мкФ. Следует учитывать возрастание напряжения на обкладках конденсаторов и соответствующим образом выбирать их рабочее напряжение. Это же относится и к конденсаторам фильтра С1, С2.

При совсем малых токах нагрузки можно воспользоваться схемой одно- полупериодного умножителя:

В зависимости от необходимого выходного напряжения Uвых=0,83Uo определяется количество каскадов N по приближенной формуле:

N=0.85U0/U1

Где U1 - входное напряжение.

Емкость С конденсаторов С1...СЗ рассчитывается:
С=34Iн*(Т+2)/U2
где lH -ток нагрузки умножителя;
U2 - падение напряжения на R1 (обычно выбирается в пределах 3...5% от U-1).

Снизить коэффициент пульсаций в умножителях напряжения можно с помощью транзисторных фильтров (рис.8),
Которые существенно уменьшают пульсации и шумы выходного напряжения и характеризуются весь малыми массогабаритными показателями. Сейчас выпускаются мощные транзисторы с допустимым напряжением 1,5 кВ и выше при токе нагрузки до 10 А. Диоды выбираются из условия Uобр=1,5U0 и Iмакс=2Iвых - Емкость С конденсаторов С1, С2 рассчитывается по приближенной формуле:

С=125Iн/U0

Сопротивление резистора R1 выбирается в пределах 20... 100 Ом. Емкость конденсатора СЗ определяется из выражения:

С3=0,5*10^6/(m*fc*R1)

Где m - число фаз выпрямителя (т=2);
fc - рабочая частота умножителя (fc=50 Гц).

Сопротивление R2 подбирается экспериментально (в пределах 51...75 кОм), поскольку оно зависит от коэффициента усиления по току транзистора VT1. В фильтре можно использовать отечественные транзисторы КТ838, КТ840,КТ872, КТ834 и аналогичные.

Обсудить статью УМНОЖИТЕЛИ НАПРЯЖЕНИЯ

Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?

Область применения

Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов - это простота изготовления.

Типы схем

Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.

Принцип работы

На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 - также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.

Расчет схемы

При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе - не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:

U вых = N*U вх - (I (N3 + +9N2 /4 + N/2)) / 12FC, где

I - ток нагрузки;

N - число ступеней;

F - частота входного напряжения;

С - емкость генератора.

Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую

Умножитель напряжения - схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 вольт постоянного тока из 100 вольт переменного тока источника, а с помощью умножителя на восемь — 800 вольт постоянного. Это если не учитывать падение напряжения на диодах (0,7 вольт на каждом).
В практике на схемах любая нагрузка будет немного уменьшенной от полученных расчетов. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна количеству звеньев.

Примечание: отличная нагрузочная способность. 2. Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Примечание: универсальность.
Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток. 3. Утроитель, 1-й вариант


Отличная нагрузочная способность. 4. Утроитель, 2-й вариант

Отличная нагрузочная способность. 5. Утроитель, 3-й вариант

Отличная нагрузочная способность. 6. Умножитель на 4, 1-й вариант

Симметричная схема, хорошая нагрузочная способность. 7. Умножитель на 4, 2-й вариант

Симметричная схема, хорошая нагрузочная способность. 8. Умножитель на 4, 3-й вариант

Симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки. 9. Умножитель на 5

Отличная нагрузочная способность. 10. Умножитель на 6, вариант первый

Отличная нагрузочная способность. 11. Умножитель на 6, вариант второй

Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки. 12. Умножитель на 8, первая схема подключения

Симметричная схема, отличная нагрузочная способность. 13. Умножитель на 8, вторая схема подключения

Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки. 14. Умножитель напряжения Шенкеля - Вилларда

Превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене. 15. Умножитель со ступенчатой нагрузочной способностью

Нагрузочная характеристика имеет две области - область низкой мощности - в диапазоне выходных напряжений от 2U до U и область повышенной мощности - при выходном напряжении ниже U. 16. Выпрямитель с вольт добавкой

Наличие дополнительного маломощного выхода с удвоенным напряжением питания. 17. Умножитель из диодных мостов

Хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

В статье описаны основные варианты умножителей напряжения, применяемых в самых различных электронных устройствах, и приведены расчетные соотношения. Этот материал будет интересен радиолюбителям, занимающимся разработкой аппаратуры, в которой применяются умножители.

В современных радиоэлектронных устройствах умножители нашли широкое применение. Они используются в телевизионной и медицинской аппаратуре (источники анодного напряжения кинескопов, питания маломощных лазеров), в измерительной технике (осциллографы, приборы для измерения уровня и доз радиоактивного излучения), в приборах ночного видения и электрошоковых устройствах, бытовых и офисных электронных устройствах (ионизаторы, "люстра Чижевского", ксерокопировальные аппараты) и многих других областях техники. Произошло это благодаря главным свойствам умножителей - возможности формировать высокое, до нескольких десятков и сотен тысяч вольт, напряжение при малых габаритах и массе. Еще одно их важное преимущество - простота расчета и изготовления.

Умножитель напряжения состоит из включенных определенным образом диодов и конденсаторов и представляет собой преобразователь напряжения переменного тока низковольтного источника в высокое напряжение постоянного тока.

Принцип его работы понятен из рис. 1, на котором приведена схема однополупериодного умножителя. Рассмотрим происходящие в нем процессы поэтапно.

Во время действия отрицательного полупериода напряжения конденсатор С1 заряжается через открытый диод VD1 до амплитудного значения приложенного напряжения U. Когда к входу умножителя приложено напряжение положительного полупериода, конденсатор С2 через открытый диод VD2 заряжается до напряжения 2Ua. Во время следующего этапа - отрицательного полупериода - через диод VD3 до напряжения 2U заряжается конденсатор C3. И. наконец, при очередном положительном полупериоде до напряжения 2U заряжается конденсатор С4.

Очевидно, что запуск умножителя происходит за несколько периодов переменного напряжения. Постоянное выходное напряжение складывается из напряжений на последовательно включенных и постоянно подзаряжаемых конденсаторах С2 и С4 и составляет 4Ua.

Изображенный на рис. 1 умножитель относится к последовательным умножителям. Существуют также параллельные умножители напряжения, для которых требуется меньшая емкость конденсатора на ступень умножения. На рис. 2 приведена схема такого однополупериодного умножителя.

Наиболее часто применяют последовательные умножители. Они более универсальны, напряжение на диодах и конденсаторах распределены равномерно, можно реализовать большее число ступеней умножения. Имеют свои достоинства и параллельные умножители. Однако такой их недостаток, как увеличение напряжения на конденсаторах с увеличением числа ступеней умножения, ограничивает их применение до выходного напряжения примерно 20 кВ.

На рис. 3 и 4 приведены схемы двухполупериодных умножителей. К достоинствам первого (рис. 3) следует отнести следующие: к конденсаторам С1, C3 приложено только амплитудное напряжение, нагрузка на диоды равномерна, достигается хорошая стабильность выходного напряжения. Второй умножитель, схема которого приведена на рис. 4. отличают такие качества, как возможность обеспечения высокой мощности, простота в изготовлении, равномерное распределение нагрузки между компонентами, большое число ступеней умножения.

В таблице приведены типовые значения параметров и область применения умножителей напряжения.

При расчете умножителя следует задать его основные параметры: выходное напряжение, выходную мощность, входное переменное напряжение, требуемые габариты, условия работы (температура, влажность).

Кроме того, необходимо учесть некоторые ограничения: входное напряжение может быть не более 15 кВ, частота переменного напряжения ограничена в пределах 5... 100 кГц. выходное напряжение - не более 150 кВ, интервал рабочей температуры от -55 до +125*С, а влажности - 0...100 %. На практике разрабатывают и применяют умножители с выходной мощностью до 50 Вт, хотя реально достижимы значения в 200 Вт и более.

Выходное напряжение умножителя зависит от тока нагрузки. При условии, что входное напряжение и частота постоянны, оно определяется формулой: Uвых = N · Nвх - /12FC, где I - тoк нагрузки. A; N - число ступеней умножителя; F - частота входного напряжения. Гц; С - емкость конденсатора ступени, ф. Задавая выходное напряжение, ток. частоту и число ступеней, из нее вычисляют требуемую емкость конденсатора ступени.

Эта формула приведена для расчета последовательного умножителя. В параллельном для получения того же выходного тока необходимая емкость меньше. Так, если в последовательном емкость конденсатора 1000 пФ, то для трехступенчатого параллельного умножителя потребуется емкость 1000 пФ / 3 = 333 пФ. В каждой последующей ступени такого умножителя следует применять конденсаторы с большим номинальным напряжением.

Обратное напряжение на диодах и рабочее напряжение конденсаторов в последовательном умножителе равно полному размаху входного напряжения.

При практической реализации умножителя следует уделить особое внимание выбору его элементов, их размещению и изоляционным материалам. Конструкция должна обеспечивать надежную изоляцию во избежание возникновения коронного разряда, который снижает надежность умножителя, приводит к выходу его из строя.

Если требуется изменить полярность выходного напряжения, полярность включения диодов следует изменить на обратную.

Габариты и масса высоковольтных трансформаторов из-за необходимости обеспечения электрической прочности становятся очень большими. Поэтому удобнее использовать в высоковольтных маломощных источниках питания умножители напряжения. Умножители напряжения создаются на базе схем выпрямления с емкостной реакцией нагрузки. Принцип действия таких схем в том, что последовательно соединенные конденсаторы заряжаются каждый отдельно от сравнительно низковольтной вторичной обмотки трансформатора через свои вентили (диоды), но так как по отношению к нагрузке конденсаторы соединены последовательно, то общее напряжение будет равно сумме напряжений на всех конденсаторах, то есть выходное напряжение схемы умножится по сравнению с напряжением обычного выпрямителя.

Внутренне сопротивление схемы умножения возрастает с увеличением числа каскадов, поэтому она должна работать на высокоомные нагрузки. Наибольшее распространение получили однофазные симметричные и несимметричные схемы умножения напряжения.

Симметричные схемы умножения напряжения отличаются от несимметричных способом подключения к вторичной обмотке трансформатора.

Однофазные несимметричные схемы умножения представляют собой последовательное соединение нескольких одинаковых однотактных схем выпрямления с емкостной реакцией.

В схеме показанной на рисунке каждый последующий конденсатор заряжается до более высокого напряжения. Если ЭДС вторичной обмотки трансформатора направлена от точки а к точке б , то открывается первый вентиль и происходит заряд конденсатора С1. Этот конденсатор зарядится до напряжения равного амплитуде напряжения на вторичной обмотке трансформатора U2m. При изменении ЭДС вторичной обмотки будет протекать ток заряда второго конденсатора по цепи: точка а , конденсатор С1, вентиль VD2, конденсатор С2, точка б . При этом конденсатор С2 зарядится до напряжения UC2 = U2m+UC1 = 2U2m , так как вторичная обмотка трансформатора и конденсатор С1 оказались включенными последовательно и согласованно. При последующем изменении направления ЭДС вторичной обмотки происходит заряд третьего конденсатора С3 по цепи: точка б , С2, VD3, С3 точка а вторичной обмотки. Конденсатор С3 будет заряжаться до напряжения UC3 = U2m+UC2≈3U2m и так далее.

Таким образом, на каждом последующем конденсаторе кратность напряжения соответствует UCn = nU2m .

Необходимое высокое напряжение снимается с одного конденсатора Сn.

В схеме показанной на следующем рисунке наибольшее напряжение на конденсаторах равно удвоенному напряжению на вторичной обмотке.

В первый полупериод напряжения вторичной обмотки через вентиль VD1 заряжается до амплитудного значения напряжения вторичной обмотки U2m конденсатор С1. Во второй полупериод напряжение вторичной обмотки трансформатора изменит свое направление и будет включено согласно с напряжением конденсатора С1. Конденсатор С2 зарядится через вентиль VD2 до суммы этих напряжений 2U2m.

В следующий по порядку полупериод через вентиль VD3 заряжается конденсатор С3. Он зарядится до напряжения:

UC3 = -UC1 + U2m + UC2 = — U2m+U2m + 2U2m = 2U2m

Нетрудно заметить, что и остальные конденсаторы схемы заряжаются до удвоенного напряжения вторичной обмотки. В этой схеме в отличии от первой умноженное напряжение снимается не с одного, а нескольких конденсаторов.

В схемах умножения при росте тока нагрузки выходное напряжение существенно снижается. Частота пульсаций в рассмотренных схемах умножения равна частоте сети.

Напряжение на последнем конденсаторе схемы умножения появится только после того полупериода напряжения вторичной обмотки трансформатора, который соответствует коэффициенту умножения, то есть через время tт = nT/2 , где Т — период выпрямленного напряжения.

Схема Латура (удвоение напряжения)

Схема Латура представляет собой мостовую схему у которой два плеча моста включены вентили VD1 VD2, а два другие плеча — конденсаторы С1 С2. К одной из диагоналей моста подключена вторичная обмотка трансформатора, к другой нагрузка. Схему удвоения напряжения можно представить в виде двух однополупериодных схем, соединенных последовательно и работающих от одной вторичной обмотки трансформатора. В первый полупериод, когда потенциал точки а вторичной обмотки положителен относительно точки б , откроется вентиль VD1 и начинается заряд конденсатора С1. Ток в этот момент протекает через вторичную обмотку, VD1 и С1.

Во второй полупериод заряжается конденсатор С2. Ток заряда конденсатора С2 протекает через вторичную обмотку, С2 и VD2.

С1 и С2 по отношению к сопротивлению нагрузки Rн1 соединены последовательно, и напряжение на нагрузке равно сумме напряжений UC1 UC2.

Схема удвоения напряжения применяется при выходной мощности до 50 Вт и выпрямленном напряжении 500-1000В и выше.

Основное преимущество схемы это повышенная частота пульсации, низкое обратное напряжение на диодах по сравнению с двухфазной схемой и достаточно полное использование трансформатора. К недостаткам можно отнести повышенное значение тока диодов.

Рассказать друзьям